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INITIAL-BOUNDARY PROBLEMS FOR SEMILINEAR HYPERBOLIC
SYSTEMS WITH SINGULAR COEFFICIENTS

In the paper we use the framework of Colombeau algebras of generalized functions to study existence and
uniqueness of global generalized solutions to mixed non-local problems for a semilinear hyperbolic system.
Coeflicients of the system as well as initial and boundary data are allowed to be strongly singular, as the
Dirac delta function and derivatives thereof. To obtain the existence-uniqueness result we prove a criterion
of invertibility in the full version of the Colombeau algebras.

1. Introduction.

In the domain IT = {(z,f)] - L < & < L, t > 0} we consider the following initial-
boundary value problem for a generalized function U:

(0 + Az, 8)0:)U = f(=,t,U), (z,t) € I, (1)

Uli=o = A(z), z€(-L,L) (2)
L

B(t)Ul|e=—r + C(t)U)z=1 + / D(z,t)Udz = H(t), te€ (0,00) (3)
—L

where, U, f. A, and H are real n-vectors, A, B, C, and D are real (n x n)-matrices, and
A = diag(Ay, ..., A,) is a diagonal matrix. _

Special cases of (1)—(3) are mathematical formulations of problems arising in population
dynamics 1, 7, 15], laser dynamics [5, 13, 14, 16], and chemical kinetics [17].

Our goal is to find global solutions to problem (1)—(3) when the data A, A, B, C, D,
and H are allowed to be strongly singular (at least of the Dirac delta type). This entails
multiplication of distributions in (1) and (3). Indeed, since initial singularities expand from
Ol into II along characteristic curves of (1), one can expect that solutions within IT are at
least as singular as they are on JII. Furthermore, since the characteristics of (1) are singular
themselves, we also meet the problem of composition of two singular functions (for instance,
the composition of singular initial data with singular characteristic curves). It is known [3]
that even if F' is a regular function, but S is a singular one, then F(S(z)) is not well-defined
in D’'. Finally, it should be noted that such three ingredients as singularities, nonlinear
operations, and differentiation, cannot be presented unrestrictedly within D’. All this makes
impossible to use the framework of the distribution theory for our purpose. Nevertheless,
such a differential-algebraic structure as an algebra of generalized functions is able to deal
with the above problems in a quite reasonable way. We here use the Colombeau version G
of an algebra, which is defined on any domain in R" as well as on its closure, is a sheaf, and
admits restrictions to the coordinate planes.

We hence assume that entries of A are generalized functions in the Colombeau algebra
G[—L, L], entries of B, C, and H are from G(R, ), and entries of A and D are from G(II).

Another advantage of using Colombeau algebra of generalized functions lies in the fact
that in a variety of important cases the division by generalized functions, in particular the
division by discontinuous functions and measures, is defined in G. The latter, of course, is
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impossible in D’. We completely describe the cases when the division is possible by obtaining
a criterion of invertibility in G(2).

The plan of our exposition is as follows. Section 2 presents some preliminaries. In
Section 3 we extend the criterion of invertibility from the simplified version of Colombeau
algebra G,(Q) (see [4]) to its full version G(f2). The main result of the paper is given in
Section 4, where we prove the global existence-uniqueness theorem within G(£2).

A novelty of the paper is that it treats singular coefficients in (1) in the context of
mixed problems for a quite wide range of boundary conditions which can be classical as well
as nonclassical (nonseparable and integral).

Existence-uniqueness results within Colombeau algebras for two-dimensional hyperbolic
problems with discontinuous coefficients were studied in [6, 9, 11, 12]. Note that the disconti-
nuity implies global boundedness estimates on the coefficients within Colombeau algebra G,
thereby avoiding the negative effect of infinite propagation speed. At the present paper we
do not impose the assumption of global boundedness on coefficients of (1), thereby allowing
them to be strongly singular. In [10] the authors use the Colombeau algebra of tempered
generalized functions G, to succeed with strongly singular coefficients in Cauchy problems
for hyperbolic systems.

2. Preliminaries.

In this section we summarize the relevant material on Colombeau algebras of generalized
functions.

Let Q@ C R® be a domain in R*. We denote by G(Q2) and G(Q) the full version of
Colombeau algebra of generalized functions over  and Q, respectively. To define G(f2) and

G(Q), we introduce the mollifier spaces in order to parametrize the regularizing sequences of
generalized functions. For ¢ € Ny denote

Ay (R) = {@ € D(R) l /go(a") i = 1,/xkgo(x)d:£ =0dor 1l k& q},

AR = { oz, 2a) = [T 90(ai) | 90 € A(R)}.

For p € Ap(R") define

We now introduce the algebra of moderate elements &y (Q) in the following way. Define
E@) ={u: A xQ >R ‘ u(p,.) € C®(Q) Vo € A(R)}.

Now £;(Q), is defined to be a subalgebra of £(Q) consisting of elements u € £(Q) with the
following property:

VK C Q compact ,Va € N§,3N € N such that Vy € Ay(R"),

3C > 0,3n > 0 with sup |0%u(p.,z)| < Ce™, 0<e <.
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I. Kmit

The ideal N (Q) consists of all u € £ M () such that
VK C Q compact ,Va € Nj,3N € N such that Vg > N,Vp € A,(R"),

3C > 0,3n > 0 with sup |[0°u(y.,z)| < €%, 0<e <.
rekK
Finally,

G(Q) = () /N ().

This is an associative, commutative differential algebra. The algebra G(2) on open set is
constructed in the same manner (with €2 in place of {2 in the definition above). Note that G(£)
admits a canonical embedding of D'(£2). We will use the notation U = [(u(¢, Z)) e 4orn)] for
elements U of Colombeau algebra G(Q) with u(y, z) to be a representative of U.

To reduce information from generalized functions to the level of distributions, we use the
notion of an associated distribution. We say that U € G(2) admits f € D'(Q2) as associated
distribution (or U is associated to f), denoted by U = f, if for all 1/ € D() there exists
N € N such that

ing [ (e, 2)0(2) d = (f,)

e—=0
for all ¢ € An(R™).

3. Criterion of invertibility in the full version of Colombeau algebra of
generalized functions.

In spite of the fact that G((2) is not a field, the division by singular distributions (in
particular, by discontinuous functions and measures) is sometimes possible. It is given by
the following criterion of (multiplicative) invertibility.

Let 2 C R* be an arbitrary subdomain in R".

THEOREM 1. Let U € G(2) (U € G(X2)). Then the following two conditions are equivalent:
(i) U is invertible in G(Q) (in G(Q)), i.e., there emists V € G(Q) (V € G(Q)) such that
UV =1inG(Q) (inG(Q)).

(i1) For each representative (u(y,))yeca,@n) of U and each compact set K ¢ Q (K C Q)
there exists p € N such that for all ¢ € A,(R") there is n > 0 with i%f lu(pe, x)| > P for all

0<e<n.

Note that the criterion of invertibility for the simplified version of Colombeau algebra
Gs(Q2), where € is open, was proved in [4].

Proof. We use the argument similar to that presented in [4]. We prove the desired assertion
for an arbitrary fixed open set ) (the proof for the closed set Q is similar).

(1) = (#). Set U = [(u(p,2))peao@m] and V' = [(v(g,Z))peca0@®n)]- By assumption,
there exists N = [(n(@, T))peaomn)] € M(Q) such that u(p., z)v(¢e, ) = 1 + n(p., z) for all
@ € Ay(R™).

Fix an arbitrary compact set K C ). We first prove that there exists p € N such that
for all o € A,(R") there is > 0 with v(¢.,z) # 0 for all z € K and 0 < £ < 1. Assume,
to the contrary, that the latter is not true. This means that for each p € N there exist
¢ € Ap(R"), a sequence ¢, \, 0, and a sequence z,, € K such that v(y,,,z,) = 0 for all
n 2 1. Hence 0 = u(ge,, Zn)0(Pe,s Tn) = 1 + n(@e,,Zs) and finally n(p.,,z,) = —1 for all
n 2 1, a contradiction to the fact that N € N(2). Since v € £\((Q2), there exists ¢ € N
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such that for all ¢ € A,(R") there are C' > 0 and p > 0 with sup |v(¢,, x)| < O/ for all
K

0 < e < . Set § = max{p,q}. Due to the fact that A, 1(R*) C A (R") for all ¢ € Ny, we
conclude that for each ¢ € Az(R") the estimate

4

. . >
lft\l,f |u((?95‘ ‘I)| —_ C

(1 — sup In(sc-;—,a‘:)l) et

b
is true for all sufficiently small £. Since K is an arbitrary compact subset of €2, the desired
assertion follows.

(ii) = (7). Consider a covering (K;);en of £ by compact sets K; such that K} C Ky C
-+ C Q. It is known that, if W € G(Kiy1), then Wlg, € G(Kj) for all j < i. This fact is
true due to the sheaf properties of G(£2).

Set v(we, ) = 1/u(pe,x) and vi(pe,x) = v(ge, x)|k;- Fix an arbitrary i € N. By
assumption, there exists p € N such that for all ¢ € A,(R") there is a constant n(¢) > 0
such that the expression 1/u(p.,z) exists for all 0 < £ < 5(p) and for all z € K;. For each
© € Ay(R") let us set v;(¢.,x) = 0, where 0 < € < n(p) and z € K;. Consider the map
v = vi(p,x) : Ag(R") — C*®(K;). Let us show that this map is moderate. Indeed, for each
v € A,(R") we have

w(pet) = e <
WP 1lee D = o] = &
for all sufficiently small £ > 0. The moderate estimate for 3*v;(, x), where |a| = 1, follows
from the simple estimate

a 1 =
d ('H(E;)E,CIIJ)‘ =

for sufficiently small £ and from the moderateness of *u(yp, ¢). Proceeding similarly with the
higher-order derivatives of v;, we conclude that [(vi(®,2))se0rn)], denoted by V;, belongs
to E\j(K;). Furthermore, it is the inverse to U in G(K;). From the definition of Colombeau
generalized functions and the construction of V; it follows that Vi|x, € G(Kj) for all j < i.
We therefore obtained a coherent family {V;,i € N}. By the sheaf properties of G(£2), there
exists a unique element V' € G(Q) such that V|x, € G(K;) for all i > 1. By construction, V'
is an inverse to U in G(©2). O

We now take into account the definition of Colombeau generalized numbers and the fact
that an element U € G(Q) is a constant iff there is r € C such that U — r = 0 in G(£2). The
following corollary provides a criterion of invertibility of Colombeau generalized numbers
within the full version of Colombeau algebras. For the same result within the simplified
version of Colombeau algebras see [4].

0% (u(pe, 7))
u?(e, )

- (u(ee, ))

g2p

COROLLARY 2. Let r € C. Then the following two conditions are equivalent:

(i) v is invertible in C, i.e., there exists s € C withrs =1 inC.

(ii) For each representative (r(¢)),ea0r®) 0f T there exists p € N such that for all ¢ € Ay(R)
there is n > 0 with |r(p:)| > €P for all 0 < e < 1.

ExaMPLE 3. Let

= (104 5™ (165)) ] <5



I. Kmit
where Q C R, I(p) = sup{|y|, ¢(y) # 0}, ®(z) € D(Q) is a fixed element of D(2) such that

[ ®(z)dx = 1 and ®(z) > 0. One can easily see that U ~ 6™ Indeed, for an arbitrary
Y(x) € D(Q) we have

1 T
: P (m) o —edm o

l(¢), we have the following estimate: for each compact set K C Q and for
there exists n > 0 with

Since l(p.) = ¢
each g € A )

1 % 1 7
inf|l(p) + @im)( )’ = inf _Cahda B (—)‘ o peEary
R+ ) Up))| & elm+1 () el(p)

This estimate is uniform with respect to all compact sets K C Q and ¢ € A5(R). By Theorem
1, U is invertible in G(£2).

el(p) +

This example shows that within G(2) the division by the derivatives of the delta-function
is possible.

PROPOSITION 4. Let U € G(Q) (U € G(Q)) and U is invertible in G(Q) (in G(Q)). Then
the multiplicative inverse of U is unique.

Proof. We prove the desired assertion for an open set Q (the proof for the closed set () is
similar).
Assume, to the contrary, that U possesses two multiplicative inverses V1,1, € G(Q).
This implies the equality
U(Vi=13) =0in G(Q).

We conclude from Theorem 1, specifically from the local invertibility estimate, that U ¢
N (), hence that V; — V5 € N(Q), and finally that V; = V5 in G(Q), a contradiction to our
assumption. [J

4. Existence and uniqueness of Colombeau generalized solutions.

In this section we develop the results of [8] to the case of singular coefficients in (1).
Simultaniously, we consider less restrictive conditions on the initial data in (2) and (3). To
prove a general global existence and uniqueness result in Colombeau algebra of generalized
functions, we need the following definition of generalized functions of a less restrictive growth
if comparing with 1/¢-growth (see the definition of &£y).

DEFINITION 5.Let Q@ C R™ be a domain in R". Suppose we have a function v : (0,1) —
(0,00). An element U € G(Q2) (U € G(R2)) is called locally of v-growth, if it has a representa-
tive u € E\1(Q) (u € E\f(Q)) with the following property:
For every compact subset K C §) there is N € N such that for every ¢ € Ax(R") there
exist C > 0 and n > 0 with sup |u(p.,z)| < CYN(e) for 0 < € < 7.
reER

Note that this definition generalizes Definition 2 from [8].

DEFINITION 6. Let Q C R" be a domain in R". Suppose we have a function v : (0,1) —
(0,00). An element U € G(2) (U € G(2)) is called locally y-invertible, if it has a representa-
tive (u(p, T))pea,@n) With the following property:
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for each compact set K C Q (K C Q) there exists p € N such that for all p € A,(R")
there is n > 0 with i%f |u(@e, )| = yP(e) for all 0 < e < 1.

We now make several assumptions on the initial data of problem (1)-(3). Let v(¢) and
71(£) be positive functions from (0, 1) to (0,00) having the properties

w(s)”f"““uoe), %(6)”"1N(EJ=OG)= qr(e)’fi"@}:o(g) il bty

for each N € N. Assume that

1. The mapping U + f(x,¢,U) and all its derivatives are polynomially bounded, uniformly
over (z,t) varying in compact subsets of II.

2. The mapping U — Vy f(z,t,U) is globally bounded, uniformly over (z,t) varying in
compact subsets of II.

3. Ai,...,Ar < 0, Agyr,...,An > 0 (these inequalities are satisfied on the level of
representatives), where k is fixed and 1 < k£ < n.

4. A; and Dy for i < n and j < n are locally of y-growth on II.

[y}

B;; and C;; for i < n and j < n are locally of y-growth on [0, 00).

6. 9, A\; for i < n are locally of ~;-growth on TI.

=1

A; for i < n are locally y-invertible on II.

8. The determinant of the matrix

Bigir 1vor By g .. Chik
R(t) = BQ,’k—'rl ‘s B?n C:zl . Cf.2k
Bn,k-i—] con  Byn Cnl sy an

is locally -invertible on [0, 00).

9. suppA;(z) C (=L, L); suppB;;(t), suppCis(t) C (0,00) for 1 < i < n, 1 < j <k,
k+1<s<n;suppDin(z,t) C (0,00) x [-L, L] for 1 <i,m < n.

Let U € G(Q) and a smooth function g(x) be slowly increasing at the infinity. By the
definition of G(©2), we have g(U) € G(2). Due to this fact and Assumption 1, f(z,#,U) is a
well-defined element of G(€2). Condition 2 is, in fact, sufficient and is imposed to ensure the
global classical solvability of problem (1)—(3) with smooth initial data. We need Assumption 7
to transform the initial problem into an equivalent integral-operator form. Assumption 8
ensures the compatibility of (2) and (3) of any desired order. The hyperbolicity of system (1)
is ensured by Assumption 3.

The point of Assumption 4 is that it allows us to consider A;, B;;(t), Cy;(t), and D;;(x.1)
being discontinuous functions, the delta functions, and the derivatives thereof. An illustration
of this fact is given by Example 3, if one takes v(I(y)) in place of 1/1(¢), where vy is specified
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by v(p) = \/é— logloglog (1/p). If one takes in addition v,(p) = /loglog (1/p), the same
example shows that Assumptions 4 and 5 on A do not contradict one another.

We are prepared to state the main result of the paper.

THEOREM 7 Suppose that A € G|—L, L], A,D € G(I), B, C, H € G(R,.), and f is smooth
with respect to all its arguments. Under Assumptions 1-8 where the functions v and v, are
specified by (4), problem (1)-(3) has a unique solution U € G(II).

Proof. We first transform problem (1)-(3) into an equivalent integral-operator form. Note
that all algebraic operations as well as operation of integration over finite intervals will be
carried out on the level of representatives. Denote by w;(7;x,t) the i-th characteristic of (1)
passing through a point (z,t) € II, i.e., £ = w;(7;z,1) is the solution to the Cauchy problem:

dt _
== AT, &) =2

The smallest value of 7 > 0 at which the characteristic £ = w;(7;z,t) intersects 8I1 will be
denoted by t;(z, ).

By Assumption 7 and Theorem 1, det R(¢) has an inverse with entries in G(IT). Using
in addition Proposition 4, we conclude that there exists a unique element (det R)~! € G(II)
such that det R (det R)~* = 1. This means that the local part of boundary conditions (3)
is solvable with respect to those components of U whose characteristics move into I1. Using
this fact and integrating each equation of (1) along the corresponding characteristic curve,
we obtain the following integral-operator form of (1)-(3):

t 1
Ui(z,t) = (RU)(z,t) + f [U(wi(’r; z,t),7) [ Vo fi(wi(r; z,1),7,0U) do
ti(x,t) 0
+f'f(wf(7_; T, t),’?', O)] d’]"., ii S i S n,

(5)

where
f't:f—f(ti(.'}:,t)) if t@(i’, t) = 0,
(RU)(a,1) =
A;(w;(0; z,t)) if ¢;(x,t) = 0,
Mi(t) =Uilz=—1, k+1<i<n
;'.f!(f) == erl.’)’,‘:Lg | < 7 = k.
and

M;(t) detR Z R(t) [Hj(t) - ; Bjs(H)Us(—L, )

ol

= Z CaaltUnlLot) = 3 / D;y(z,t)Us(x, 1) da:].

It is easy to see that problems (1)—(3) and (5) are equivalent in G(f).
Given T > 0, denote

I ={{zt)| - L << L0 <t <T}
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In [8] we proved that problem (1)—(3) with smooth initial data has a unique smooth solution
in 17, whatsoever T' > 0. For this purpose we used the contraction mapping principle and
obtained local smooth solution. In parallel, we obtained local a priori estimates for the latter.
To obtain global smooth solution, we used finite iteration of the local a priori estimates. We
also derived global a priori estimates for this solution. To prove the existence of a generalized
solution to the problem under consideration, let us rewrite just mentioned estimates from (8],
with taking care of the norm of A; as well as of the norms of the elements of R. Notice that
the assumptions imposed on A; and R here differ from those imposed in [8]. To be precise,
in [8] A; and R;; for all i,j < n are assumed to be, respectively, smooth and Colombeau
generalized functions locally of bounded growth. Referring the reader to [8] for details, we
now write down the final a priori estimates for a global smooth solution U in a suitable for
our purposes form. Set

Ey(l) = max{|8.Ui(,1)| : (z,t) €T, 1 < i < n},

B anaalli, )= max{|0% 2 A (x,t)] : (z,t) € ﬁT,I <i<n},
Epmin = min{|Ay(z,8)] : (z,8) e T ,1<i<n},
il

det R(1)

Fr = max
t€[0,77]
Ep(l) = max{|BO(t)| : t € [0,T],1 < 4,j < n},

Ep(l) = max{|0!Dy(z, 1) : (x,1) €T ,1 < i,j <n},

Ep = max{|Vy fi(z,t,y)| : (z,t,9) €T xR 1<i<n}

R¥(t
Gy = n2 max 2 ( ) ‘ [REF( max {|Bj3(t)|, |Cﬂ-(t) |} =+ QLED(OH)
te[0,17, R(t) te[0,T],1<j<n,
1<i,j<n 1<s<k k+1<r<n

+ED(0)EA,maar(0: 0)] ¥ nEF:

dm = (QO - nEF)E;\,mam(Os OJm(EA,min)‘m + nEF‘ Iz nLEA,mam(la 0)

With this notation, we have

Bl Pl,m(  max{E2(0), EX(0)}, Er, Ep(0),n2, L.

1 — gmt(m)

(E;\,ma:r (0 0) )m’ (EA smin ) _m)

6
XP2.m (D{r&ax EUU)a (Eg\,min)_sgn(m); max E;\,mam(zl: ’!2) m?‘gfn{EB(l) EC(Z)}-: ( )

<m—1 1<l +la<m "0<l
(0 0]
max Ep(l), Eg, max |H;"(2)], max |A; (3:)|),

Gicm t€[0,7), ze[~L,L),
1<i<n,0<i<m 1<i<n,0<I<m
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where t(m) < min{L/E\ az(0,0),1/¢m}, P,y is a polynomial of degree 8[7/t(m)] with
positive constant coeflicients not depending on ¢, and P;,, is a polynomial whose degree
depends on m but neither on T nor on ¢(m) (and, therefore, not depending on z) with
positive constant coefficients depending on f and not depending on .

The classical smooth solution to problem (1)-(3) satisfying estimates (6) in II* for all
m € Ny can be constructed by the sequential approximation method. This solution will
serve to build up a representative of the Colombeau solution. We now construct the latter.
Accordingly to the assumptions of the theorem, we consider all the initial data as elements
of the corresponding Colombeau algebras. We choose representatives ), a, b, ¢, d, and h of
A, A, B, C, D, and H, respectively, with the properties required in the theorem. Hence a
representative of R is therewith defined. We will denote it by r. Let ¢ = ¢ ® ¢ € Ay(R?).
Consider a prospective representative u = u(@,x,t) of U which is the classical smooth
solution to problem (1)-(3) with initial data A(d,z,t), a(y,z) and boundary data b(y,1),
c(p.t), d(¢,x,t), h(p,t). It remains to show the moderateness of u, i.e. that u € &y. To
do so, we will obtain moderate growth estimates of u(¢.,z,t) in terms of the regularization
parameter e.

Let £ be small enough and ¢ € Ay(R?) with NV chosen so large that the following
conditions are true:

a) the moderation property holds for a(y.,z) and h(y.,1);

b) the local-y-invertibility estimate (see Definition 6) holds for \;(¢.,z,t) and r(¢.,1).

¢) the local-y-growth estimate (see Definition 5) holds for \;(¢., z,t), b;j (¢, t), ¢ij(¢e, t)
and d;;(&.,z,t), where : < n and j < n.

d) the local-y;-growth estimate holds for 9,);(¢., z,t), where i < n.

It suffices to prove the moderateness of P, and P,,, for all m € Ny, where U(z,1),
Az, t), A(z), B(t), C(t), R(t), D(z,t), and H(t) are replaced by their representatives
u(e,z,t), A(o,7,1), a(p, ), b(e,t), c(p,t), r(p,t), d(d,x,t), and h(p,t), respectively. We
see at once that for each m € N, the estimate

o ,_}_,QN{mw'-l}H(g) e ’Y{V_H(E)

is true for all sufficiently small . Since ¢(m) < min{L/E\ 4z(0,0),1/¢n} and Ex ez (0,0)
> 1/yN(e) for all p € An(R), we can choose ¢(0) = 1/[2(y*N+D+1(g) + 4N +1(e))] < 1/4o.
Taking into account (4), for each m € Ny and for all small enough ¢ we have

T/
ot (o R < MM D () 4N+ (e)))
1-— th(Tn') a

AN (m+1)+1 [27+1 e [2T7+1 1
< (™A (e O(;),
[T/t(m)]
(max{E;f(o), E™(0)} B+ E4(0)n2L(Exmaa (0, 0))™ (Exmin (0)) ~m)
% ,T(E)N(2m+n+2}[22!'(’}’2N{m+1}+1(EJ-H’{VH (N — O(})
= €
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It follows that for each m € Ny there exists N € N such that for all ¢ € Ay(R) we have

1 &
m | =7, max{Ey(0), E¢(0)}, Er, E g F
o (1 — gmt(m) max{ £y (0), B¢ (0)}. 4(0)n*, L,

| (7
(Bxmaz (0, 0))™, (Ew-,,_)—m) ~0 (1) |

One can easily see now that for [ =0

E()=0(%) ®)
for all ¢ € Ayx(R) with large enough N € N. To prove similar estimates for all derivatives
of U, with respect to z, we use induction on [. Assuming (8) to hold for [ < m, let us show
that (8) is true for | = m + 1 as well. Indeed, let ¢ be small enough and ¢ € Ax(R) with NV
chosen so large that the following conditions are true:

a) the moderateness property holds for d*a(¢.,x), 0°h(pe,t), b (p.. 1), 9 (p., 1),
Fd(d: 1), Bi‘@izx\(_cbg, z,t), Obu(g., z,t) forall0 < s <m+1,0<1 <m,0 < L1+l < m+1;

b) the local-y-invertibility estimate holds for \;(¢., x, ).

Note that dLu(d.,z,t) for 0 < | < m has moderateness property due to the induction
assumption. Since P, ,, is a polynomial whose degree does not depend on ¢, the moderateness
of P,,, becomes obvious. We are done by (7).

The moderate estimates on ¢ as well as on mixed derivatives follow immediately from (1)
by successive differentiation. This finishes the existence part of the proof.

The proof of the uniqueness part follows the same scheme. The only difference is that
now we consider problem (1)-(3) with right hand sides of (2) and (3) in V. The analysis
is even simplier since by [2], it is sufficient to check negligibility at order zero. The proof is
complete. [

REMARK 8. To prove the theorem, we used an integral-operator form (5) of the problem
under consideration. Considering (5) with respect to a Colombeau function U € g(ﬁi ), we
see that the right hand side of (5) includes compositions of generalized functions. Specifically,
we have compositions of the singular initial and boundary data as well as the function U
with the singular characteristic curves.

Note that the Colombeau algebra G is invariant under superposition with smooth
polynomially bounded maps. In spite of the fact that the latter is not the case for the
compositions involved by (5), all terms in (5) are well-defined in the Colombeau sense.
To show this, consider system (5) with U replaced by u(¢,z,t), where the latter is a
representative of the Colombeau solution stated in the theorem. From the proof it follows
that, given (z,t) € ﬁr, the domain of dependence for u(¢.,x,t) is included in a compact
subset of TI' which is independent of ¢ > 0 and ¢ € Ay(R). This means that we here do
not have the effect of infinite propagation speed (which could be caused by the fact that
characteristic curves depend on ¢ € Ay(R)).

We conclude that the right hand side of (5) is well-defined in the Colombeau sense.
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